A Coq Mechanized Formal Semantics of Cypher

Svetlana Semenova
HACS287

Faculty Sponsor: Leonidas Lampropoulos



Abstract

Cypher is a language used for querying and updating property graph databases, which has
increased in popularity with the rise of commercial graph databases. This has created the
need for mechanized, formal semantics for Cypher queries in a proof assistant like Coq.
A semantics of Cypher has already been written out; this project aimed to translate those
semantics into Coq. Much of the syntax and semantics were formalized successfully, with
space for future developers to implement and test various matching algorithms.

Introduction

Cypher is a language used for querying and updating property graph databases. It was
originally developed by Neo4j for their implementation of a property graph database,' but
since then, it has been adopted, modified, and used by other commercial graph databases,
such as RedisGraph®? and Memgraph,® among others. It even has had an impact on the
GQL project, an international effort to create a standard graph query language.* Needless
to say, Cypher is a quickly growing and influential language that will only continue to
grow from here.

As a growing language with several implementations in the market, it became necessary
for the community to create a formal semantics that can then, in future efforts, be used
either to formally verify the correctness of a given implementation or as an oracle to test
it.’ This, in turn, can ensure the integrity of such implementations, which has historically
starkly reduced miscompilations. And especially with Cypher, a language that directly
interfaces with data, reducing bugs in its implementation is critical to keep the data it
works with secure.

A semantics for Cypher has already been written out by Francis et. al.: a group of
researchers spread between Universite Paris-Est, University of Edinburgh, and Neo4;.6
Translating these semantics into a proof assistant, like Coq, is a reasonable next step. This
will allow Cypher programs to be processed in Coq, which can then be used to formally

! “Cypher Query Language,” Neo4j, accessed January 28, 2023, https://neo4j.com/developer/cypher/
2 “RedisGraph: A Graph database built on Redis,” Redis, accessed January 28, 2023,
https://redis.io/docs/stack/graph/

3 “Neodj vs Memgraph,” Memgraph, accessed January 28, 2023,
https://memgraph.com/memgraph-for-neo4j-developers

4 “GQL Standard,” Graph Query Language GQL, last modified December 2, 2022,
https://www.gqlstandards.org/home

5 John Longley, “Goals of formal semantics,” The University of Edinburgh School of Informatics, accessed
January 28, 2023, https://www.inf.ed.ac.uk/teaching/courses/fpls/note2.pdf

® Nadime Francis, et al, “Formal Semantics of the Language Cypher.” arXiv, March 20, 2018.
http://arxiv.org/abs/1802.09984.



verify that the programs follow the specifications they claim to be following. As well,
having a mechanized semantics will make it easier to formally verify implementations in
the future. Therefore, my goal in this project was to do just that: mechanize the semantics
written by Francis et. al. in Coq.

I first formalized the data structures Cypher uses to represent graph data: graphs, paths,
and patterns. I then defined satisfaction of patterns, which led to the definition of path
pattern matching. I defined the syntax of Cypher and its semantics, and created a sample
graph and query as a proof-of-concept.

Methodology

The methodology for this project can be stated very succinctly: take the formalizations
written by Fracis et. al. and translate them into Coq code. This involved first encoding the
basic data structures Cypher needed. Then, the formal semantics were written in Coq, in
essence creating an AST tree — also defined as an inductive data structure — that could
then be analyzed in Coq. Writing the semantics is split between defining expressions and
defining queries.

Basic Data Structures
The basic data structures needed were identifier types, paths, values, graphs, and tables.

Identifier types are property keys, node identifiers, relationship identifiers, node labels,
and relationship labels. The first three were represented as an inductive data structure
with one constructor that takes one natural number, and the last two were the same but
with a string. The reason I chose to create a separate inductive data structure, rather than
just pass around numbers or strings with type labels, is to ensure that there could be no
overlap. For example, given ID Key 2 and ID Node 2, these objects needed to be
distinct. In Coq, 2:1d_keyisequalto 2:1id node, despite technically being of
different types. So although this creates some overhead, it ensures correctness of equality.
All identifier types got decidability theorems to allow for sets of them.

Paths were defined with a simple inductive data structure. Several supporting theorems
were written: e.g. getting the length of the path, concatenating paths, getting the nth node,
and so on.

Values in Francis et. al. were defined inductively, and so I defined them inductively as
well. Two value types were not completed due to lack of time: integers and maps.
Integers currently have natural numbers as a placeholder, as Coq does not support
integers simply, and maps are currently empty. I added one extra value type, V. Error,
to be able to distinguish when a type error occurred when evaluating expressions.



Graphs were defined as a tuple in Francis et. al., and I did the same. There are, however,
a few functional differences between the detailed semantics and my implementation:

e First, 1, the function responsible for taking node/relation identifiers and keys to
values got split into two: one function for taking nodes and keys to values, and
one for taking relations and keys to values. This was done in order to make
proving things cleaner down the line.

e Second, each graph is meant to have its own set of node labels and relationship
types to draw from. However, the graphs as I have written them draw from
universal types (defined as identifier types). This was done for simplicity, and
could (and should be) modified once the rest of Cypher is coded properly.

e Finally, Francis et al. did not explicitly define any way of qualifying whether a
specific graph is valid or not, but had some implicit assumptions, e.g.
relationships point to and from nodes that exist in the graph. I wrote a proposition
valid, which could be used down the line in proofs about operations on valid
graphs. However, one assumption, explicitly stated — that 1 has finite nonnull
outputs — did not get added into the valid proposition, which is an error that
needs to be resolved in the future.

A few simple functions to extract components of the graph were also written.

Although unused as of now, I also wrote a proposition that takes in a path and a graph
and decides whether or not the path exists within the graph.

Tables are lists of records, and records are mappings from variable names to values.
These were constructed simply using built-in Coq types.

Expressions

The syntax of Cypher expressions was written as an inductive data type, creating an AST
Cypher tree. It involved operations like extracting elements from lists, comparison
operations, and logic operations. Francis et. al. did not define syntax of arithmetic, and so
those were not defined.

The semantics of expressions was defined as a function — an evaluator. Most of the
semantics, including logic, value operations, and basic list operations, were completed.
List selection, map operations, and full string support, were not completed fully due to
time.

Queries

To define queries, I started by defining path patterns, satisfaction of path patterns, and the
matching operation.



Path patterns were defined as an inductive data structure, similar to paths, of node
patterns and relationship patterns. Both of those were defined as tuples, which is similar
to how Francis et. al. defined them. Satisfaction of rigid path patterns given a path and
record is defined as an inductive proposition, similarly to the way Francis et. Al. defined
them. Satisfaction of non-rigid patterns builds on top of them. There are currently two
functional differences between the official semantics and my implementation: my
implementation does not support nil len the way Francis et. al. does, but as this is
equivalent to (1, 1), this is not a critical semantic meaning; the second is that some
things are not being properly checked, namely key existence and binding of variable
names. The second is necessary for more complex queries to work correctly, and so will
need to be completed.

The matching operation — which goes from a graph, path, and variable binding to a table
— was defined as a proposition, despite technically needing to be a function. This was
because Francis et. al. defined the end result in set-builder notation going over an infinite
domain (which they commented as still necessarily resulting in a finite table). Actually
computing pattern matches is incredibly difficult, and was outside of the scope of this
project.

Because the core computation — matching — is not defined, the rest of the semantics of
queries could not be defined as function. However, as future users of this code would
likely have a specific matching algorithm they want to test, I wrote a skeleton of query
evaluation, which would work only after the matching function is defined. The evaluation
of WHERE, WITH, and UNWIND were not completed. See Appendix A for code written.

Results

As a proof of concept, I translated a graph and query from Francis et. al. into Coq.

Teacher Teacher

KNOWS ™ KNOWS r3 KNOWS

Student @7 ry —— Teacher

Figure 1: Reprinted from Francis et. al. p. 9




Definition teacher graph : graph :=
(
(* Set N: nodes of G *)
(
set_add eg dec_id node (ID Node 1)
(set_add eq dec_id node (ID Node 2)
(set_add eg_dec_id_node (ID_Node 3)
(set_add eq_dec_id node (ID_Node 4) nil)))
)r

(* Set R: relationships of G *)
(
set_add eg dec_id rel (ID Rel 1)
(set_add eq_dec_id rel (ID_Rel 2)
(set_add eg_dec_id_rel (ID_Rel 3) nil))
)r

(* src: R->N, maps relationship to source node *)
(fun x:id rel => if eqg_dec_id rel x (ID_Rel 1) then Some (ID _Node 1) else
(if eq dec_id rel x (ID _Rel 2) then Some (ID Node 2) else
(if eq dec_id rel x (ID Rel 3) then Some (ID Node 3) else None))),

(* tgt: R->N, maps relationship to target node *)
(fun x:id_rel => if eq dec id rel x (ID Rel 1) then Some (ID Node 2) else
(if eq dec_id rel x (ID_Rel 2) then Some (ID_Node 3) else
(if egq dec_id rel x (ID_Rel 3) then Some (ID_Node 4) else None))),

(* Extra information: none for this graph *)
(fun x:id_node => fun y:id key => None:option value),
(fun x:id rel => fun y:id_key => None:optiocn value),

labels for nodes *)
(fun x:id _node => if eg dec_id node x (ID Node 1) then
(if eq_dec_id node x (ID_Node 2) then

set_add eg dec_id_label (ID Label "Teacher") nil) else
set_add eqg_dec_id_label (ID_TLabel "Student”) nil) else

(
(
(
(

(if eq dec_id node x (ID Node 3) then (set_add eq dec_id label (ID Label "Teacher”) nil) else
(if eq dec_id node x (ID_Node 3) then (set_add eqg dec_id _label (ID Label "Teacher") nil) else
(nil:set id_label))))).,

(* t: id_reltype for id rels *)

(fun x:id_rel => if eg_ dec_id rel x (ID Rel 1) then Some (ID_Reltype "ENOWS") else
(if eqg dec_id_rel x (ID_Rel 2) then Some (ID_Reltyps "K ") else
(if eq dec_id rel x (ID_Rel 3) then Some (ID Reltype "K ") else None)))

Figure 2: Translated graph with students and teachers

This code could have been made shorter with Coq syntax extension, specifically for sets
and for the mappings, which are essentially partial maps. However, doing it this way
ensured no ambiguity, which was especially useful during construction. Notation will
need to be added for ease of use once a semantics evaluator is deemed complete.

Although evaluating a query is currently impossible, it is possible to formally write them
out. The following query:

MATCH (x:Teacher) -[:KNOWS*2]-> (y) RETURN *

sampled from Francis et. al. p. 10, translates to the following code:

Definition sample path : path pattern :=

Conn
(* (x)} *)
((Some (Name (("x"%string):var_name)), (nil: set id_label), (fun y:id key => None:option walue)))
(* —[:KNOWS1..3]-> *)

((left_to right), (None:option id node), (set_add eq dec id reltype (ID Reltype "ENOWS") nil),
(fun y:id_key => None:option value), (None,Scme 2))

(* (v) *)
(Sing ((Some (MName (("y"%string):var name))})}, (nil: set id label), (fun y:id key => None:option wvalue)))
Definition sample_guery : gquery :=
(* MATCH path_pattern RETURN * +*)
Simple (CQ (MATCH (OnePatTup sample path)) (RETURN Star)).

Figure 3: Translated query



As with the graph, if Coq syntax extension had been used, this could have been written in
a shorter fashion, but this ensures no ambiguity about the meaning of the query.

Conclusion

Having a Coq mechanized semantics for Cypher will allow future projects to have a
formalization to rely on. Specifically, any projects that require some way to formally
interface with graphs can rely on this formalization. For example, Java holds its objects
as a graph, and the garbage collector runs on said graph when looking for inaccessible
objects. Having a way to formally interface with the graph can allow researchers to prove
the correctness of specific garbage collection implementations.

However, this formalization isn’t complete. For one, the details of the matching
implementation are missing due to the way they’re presented in Francis et. al. Without
that algorithm, the rest of the query evaluation process is unable to run. However, a
skeleton is built around that placeholder, so future users can fill it in to their needs and
then use the formalization as necessary. As well, certain aspects of the semantics — parts
of expression, specific types of clauses — are incomplete due to time constraints of the
project.

There are many other things to do before this formalization can be considered complete.
Beyond simply completing the semantics, there are many useful lemmas that should be
least written down. For example, base ones like the closure of matching need to be
established. More complex ones — e.g. proving that a non-matching node won’t be in the
result — should also be written out. Then, after the matching implementation is filled in,
these lemmas can be used to check the correctness of that implementation. Finding a set
of lemmas that completely describe the behavior of matching and other operations is a
worthwhile future endeavor.



References

Francis, Nadime, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, et al. “Formal Semantics of the Language
Cypher.” arXiv, March 20, 2018. http://arxiv.org/abs/1802.09984.

Graph Query Language GQL. “GQL Standard.” Last modified December 2, 2022.
https://www.gqlstandards.org/home

Longley, John. “Goals of formal semantics.” The University of Edinburgh School of
Informatics. Accessed January 28, 2023,

https://www.inf.ed.ac.uk/teaching/courses/fpls/note2.pdf

Memgraph. “Neo4;j vs Memgraph.” Accessed January 28, 2023.
https://memeraph.com/memgraph-for-neo4j-developers

Neo4j. “Cypher Query Language.” Accessed January 28, 2023.
https://neodj.com/developer/cypher/

Redis. “RedisGraph: A Graph database built on Redis.” Accessed January 28, 2023.
https://redis.io/docs/stack/graph/


http://arxiv.org/abs/1802.09984
https://www.gqlstandards.org/home
https://www.inf.ed.ac.uk/teaching/courses/fpls/note2.pdf
https://memgraph.com/memgraph-for-neo4j-developers
https://neo4j.com/developer/cypher/
https://redis.io/docs/stack/graph/

Appendix A

The code can be seen at this GitHub link:
https://github.com/sysemenova/cypher formal semantics



https://github.com/sysemenova/cypher_formal_semantics

